

INDEX

SECTION 1: REBAR

SECTION 2: WIRE ROD

SYMBOLS AND TERMS

Symbol/Term	Unit	Description
CEV	%	Carbon equivalent value.
EI.	%	Percentage elongation after fracture.
A _{gt}	%	Percentage total elongation at maximum force.
YS	MPa	Yield strength: the maximum stress that can be applied along axis before material begins to change shape (plastic deformation).
TS	MPa	Tensile strength: the maximum stress that can be applied to a material before breaking.
TS/YS		Ratio of tensile strength to yield strength.
Ductility Class		Classification of the ductility properties of rebar based on the value of TS/YS, as well as the elongation measured either as A _{gt} or El.
ISO		International Organization for Standardization.
ASTM		ASTM International Standard (formerly American Society for Testing and Materials).
EN		European Standard.
BS		British Standard.
JIS		Japanese Industrial Standard.

SECTION 1: REBAR

1. REBAR IN BUNDLE

1.1 Produced Sizes

The factory produces plain and deformed reinforcing steel bars in bundle form from size Ø 10 mm to Ø 40 mm as follows:

Diameter (mm)	10	12	14	16	18	20	22	25	28	30	32	40	
------------------	----	----	----	----	----	----	----	----	----	----	----	----	--

Any special size from Ø 10 mm to Ø 40 mm can be produced with 0.5 mm increment in diameter according to customer request.

1.2 Rebar Length

Rebar is produced with length of 6 m up to 24 m according to customer request. Standard produced bar length is 12 m.

1.3 Bundle Weight

The factory produces bundles with uniform number of bars per bundle size-wise. Weight of each bundle is about 2.0 tons for standard bar length of 12 m. Bundle weight varies between 1.0 and 4.0 ton according to bundle length.

1.4 Bundle Packaging

Compact packaging with six double ties of 7 mm wire for standard length of 12 m. For other bar lengths, number of ties ranges from 4 to 9 according to bar length.

2. REBAR IN COIL

2.1 Produced Sizes

Plain and deformed reinforcing steel bars in coil form are available as follows:

Plain rebar in coil:

	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
Diameter (mm)	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0
		14.0	14.5	15.0	15.5	16.0		

Deformed rebar in coil:

Diameter (mm)	6.0	8.0	10.0	12.0	14.0	16.0
Didilictor (illini)		BUCKES.	THE PARTY.	10:14:57	Will TRASS	

Any special size from Ø 6.0 mm to Ø 16.0 mm can be produced with 0.5 mm increment in diameter according to customer request.

2.2 Coil Weight

About 2.0 tons.

2.3 Coil Dimensions

Inner diameter: 800–850 mm. Outer diameter: 1,200–1,250 mm.

Coil height: 2,000 mm maximum (varies with produced size).

2.4 Coil Packaging

Compact packaging with 4 ties of 7 mm wire. Ties are either single or double according to size, destination and customer request. Bellyband is applied for export shipments.

3. PRODUCIBLE STANDARDS

The Factory produces rebar according to the national and international standards:

3.1 Egyptian Standards

ES 262-1/2015, ES 262-2/2015

3.2 International Standards

ISO 6935-1:2007, ISO 6935-2:2019

3.3 American Standards

ASTM A615M -16, ASTM A615M -18^{£1} ASTM A706M -16, ASTM A510M -18

3.4 British Standard

BS 4449:2005 + A3:2016

3.5 French Standards

NF A 35-016:1996, NF A 35-080-1:2013

3.6 Canadian Standard

CSA G30.18-09 (R2019)

3.7 Ukrainian Standard

DSTU 3760:2006

Other standards can be produced upon customer request. Please contact sales team for more details.

3.1 Egyptian Standards

Standard		ES:	262 – 1/2	2015, ISC): 6935 –	1:2007	Issu	ing Countr	Egypt	pt			
		Chemi	cal Com	npositio	n (Max	imum %	6)	Mechanical Properties (Minimum)					
Grade	С	Si	Mn	P	S	N	CEV (1)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%)	A _{gt} (%)	
B240A-P										1.02		2	
B240B-P	-	57 -		0.060	0.060	1	-	240	e s d f	1.08	20	5	
B240C-P										1.15		7	
B240D-P	755		i 	0.050	0.050	4		240	520 max.	1.25	22	8	
B300A-P										1.02		2	
B300B-P	1.22	122	74	0.060	0.060	- <u></u>		300	(<u></u>)	1.08	16	5	
B300C-P										1.15		7	
B300D-P		24.5		0.050	0.050	7 <u>20</u>		300	600 max.	1.25	19	8	
B420D-P	0.30	0.55	1.50	0.040	0.040	0.012	0.56	420–540		1.25	16	8	
B420DWP	0.00	0,33	1.30	0.040	0.040	0.012	0.30						

 $^{^{(1)}}CEV = %C + \frac{\%Mn}{6} + \frac{\%Cr + \%Mo + \%V}{5} + \frac{\%Ni + \%Cu}{15}$

Standard		ES:	262 – 2/2	2015, ISC	D: 6935 -	- 2:2007	Issu	ing Country	y Egypt			
		Chemic	cal Com	npositio	n (Max	imum %	6)	1	Mechanical	Properties	(Minimum)	
Grade	С	Si	Mn	P	S	Ŋ	CEV (1)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%)	A _{gt} (%)
B300A-R										1.02		2
B300B-R	3 1144	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	(d	0.060	0.060		+11-1	300	E5 H → E3	1.08	16	5
B300C-R										1.15		7
B300D-R	1 -12-		14 	0.050	0.050	-	Section 2	300		4 35	17	
B300DWR	0.27	0.55	1.50	0.040	0.040	0.012	0.49	300-390		1.25	17	8
B350DWR	0.27	0.55	1.60	0.040	0.040	0.012	0.51	350-455		1.25	17	8
B400A-R										1.02		2
B400B-R	5.15c.		A === 1	0.060	0.060	-	TES.	400		1.08	14	5
B400C-R										1.15		7
B400AWR										1.02		2
B400BWR	0.22	0.60	1.60	0.050	0.050	0.012	0.50	400	(1-1 -€	1.08	14	5
B400CWR										1.15		7
B400DWR	0.29	0.55	1.80	0.040	0.040	0.012	0.56	400–520	#LES	1.25	17	8
B420DWR	0.30	0.55	1.50	0.040	0.040	0.012	0.56	420-546	12 12	1.25	16	8
B500A-R										1.02		2
B500B-R			(1 - 1)	0.060	0.060	-		500		1.08	14	5
B500C-R										1.15		7
B500AWR										1.02		2
B500BWR	0.22	0.60	1.60	0.050	0.050	0.012	0.50	500	; :	1.08	14	5
B500CWR										1.15		7
B500DWR	0.32	0.55	1.80	0.040	0.040	0.012	0.61	500-650	-	1.25	13(2)	8

3.1.1 New Steel Grade B500DWR

(1) CEV = %C + $\frac{\%Mn}{6}$ + $\frac{\%Cr + \%Mo + \%V}{5}$ + $\frac{\%Ni + \%Cu}{15}$

TABLE 1 - COMPARISON OF MECHANICAL PROPERTIES OF STEEL GRADES B500DWR AND B400B-R

D		Steel	Grade
Property		B400B-R (Ordinary Rebar)	B500DWR (New Ezz Steel Product)
Yield strength (YS,	MPa)	≥400	500–650
Tensile strength to (TS/YS)	yield strength ratio	≥1.08	≥1.25
Cl	after fracture	≥14	≥13 ⁽¹⁾
Elongation (%)	at max. force (A _{gt})	≥5	≥8
Earthquake-resist	ance	Non earthquake-resistant (non-seismic)	Earthquake-resistant (seismic)
Weldability		Non-weldable	Weldable

(2) Manufacturing standard elongation ≥ 14%.

ADVANTAGES OF STEEL GRADE B500DWR:

- Highest yield strength and tensile strength in the Egyptian standard ES 262-2/2015.
- Highest ductility class in the Egyptian standard ES 262-2/2015.
 Ductility class = tensile strength to yield strength ratio ≥ 1.25.
- The combination of high strength and ductility provides proofing against excessive loads such as earthquakes, as follows:
 - a) When the applied stress (load) reaches the yield point, the steel still can absorb more energy before failure.
 - b) Thus, the period from yielding till failure allows enough time to evacuate the building in case of any earthquake.
- Weldable.

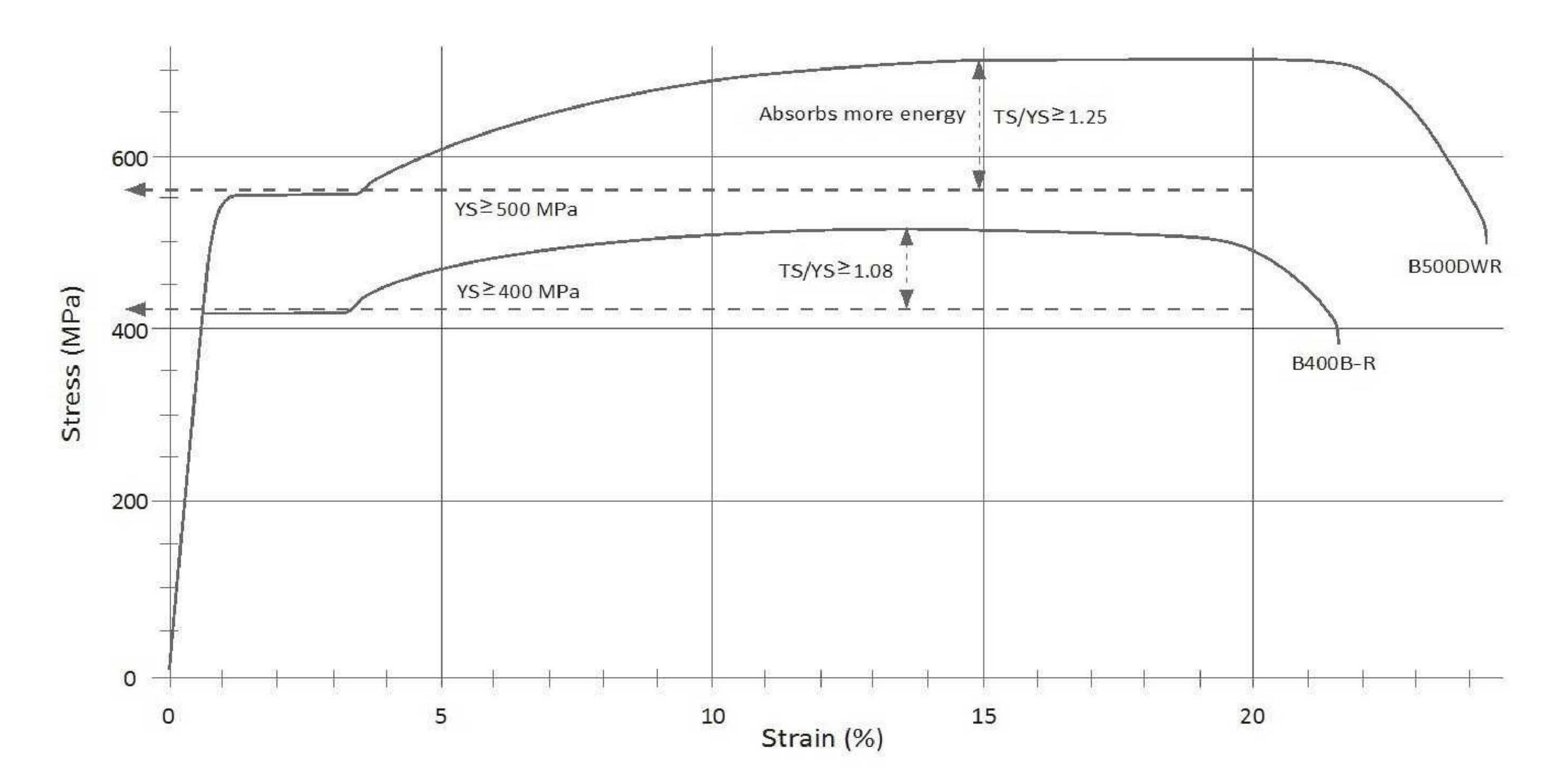


Figure 1: Comparison of Stress-Strain Curve of Steel Grades B500DWR and B400B-R

Figure 1 shows that:

- B500DWR has higher yield strength than that of B400B-R by 25%.
- B500DWR has higher tensile strength to yield strength ratio of 1.25 while the same ratio of B400B-R is 1.08.
- If the applied stress on the rebar exceeds its yield strength, such as through excessive loads generated by earthquakes, the rebar deforms plastically to a much larger extent without exceeding its ultimate tensile strength

 – this is due to its higher yield strength and TS/YS ratio. Thus, grade B500DWR is earthquake-resistant.

3.2 International Standards

Standard		ISO	6935 – 1	:2007			Issui	ng Country	Interna		IŞO	
		Chemi	cal Cor	npositio	on (Max	imum 🤋	%)	N	lechanical F	roperties (Minimum)	
Grade	C	Si	Mn	P	S	N	CEV (1)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%)	A _{gt} (%)
B240A-P										1.02		2
B240B-P	 -	-	N a d a	0.060	0.060		2	240		1.08	20	5
B240C-P										1.15		7
B240D-P	=	-		0.050	0.050	-	=	240	520 max.	1.25	22	8
B300A-P										1.02		2
B300B-P	_	1_3	# <u>-</u> -	0.060	0.060		1:	300		1.08	16	5
B300C-P										1.15		7
B300D-P		-	():	0.050	0.050	-	1—	300	600 max.	1.25	19	8
B420D-P	0.30	0.55	1.50	0.040	0.040	0.012	0.56	420–540		1.25	16	0
B420DWP	0.30	0.55	1.50	0.040	0.040	0.012	0.56	420-340		1,25	10	8

 $^{^{(1)}}$ CEV = %C + $\frac{\%Mn}{6}$ + $\frac{\%Cr + \%Mo + \%V}{5}$ + $\frac{\%Ni + \%Cu}{15}$

Standard		ISO	6935 – 2	:2019			Issui	ng Country	Interna	tional		IŞ0
		Chemi	cal Cor	npositio	on (Max	imum 🤋	%)	N	lechanical F	roperties (Minimum)	
Grade	С	Si	Mn	P	S	N	CEV (1)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%)	A _{gt} (%)
B300A-R										1.02		2
B300B-R	122			0.060	0.060	<u>-11</u>		300	<u> </u>	1.08	16	5
B300C-R										1.15		7
B300D-R		22.5	\$.	0.050	0.050			300		1.25	17	8
B300DWR	0.27	0.55	1.50	0.040	0.040	0.012	0.49	300–390		1.29	***	•
B350DWR	0.27	0.55	1.60	0.040	0.040	0.012	0.51	350–455	1.4	1.25	17	8
B400A-R										1.02		2
B400B-R	-	-	· -	0.060	0.060	-	-	400	-	1.08	14	5
B400C-R										1.15		7
B400D-R	0.29	0.55	1.60	0.040	0.040		0.55	400-520		1.25	17	8
B400AWR										1.02		2
B400BWR	0.22	0.60	1.60	0.050	0.050	0.012	0.50	400	-	1.08	14	5
B400CWR										1.15		7
B400DWR	0.29	0.55	1.80	0.040	0.040	0.012	0.56	400-520		1.25	17	8
B420DWR	0.30	0.55	1.50	0.040	0.040	0.012	0.56	420-546		1.25	16	8
B450AWR	0.22			0.050	0.050	0.012	0.50	4E0 E60		1.05		2.5
B450CWR	0.22			0.050	0.050	0.012	0.50	450-562		1.15		7.5
B500A-R										1.02		2
B500B-R	•••		Q 2	0.060	0.060	-7 -	-	500		1.08	14	5
B500C-R										1.15		7
B500D-R	0.32	0.55	1.80	0.040	0.040	-	0.60	500-625		1.25	13	8
B500AWR										1.02		2
B500BWR	0.22	0.60	1.60	0.050	0.050	0.012	0.50	500		1.08	14	5
B500CWR										1.15		7
B500DWR	0.32	0.55	1.80	0.040	0.040	0.012	0.61	500-650		1.25	13 ⁽²⁾	8

 $^{^{(1)}}CEV = %C + \frac{\%Mn}{6} + \frac{\%Cr + \%Mo + \%V}{5} + \frac{\%Ni + \%Cu}{15}$

 $^{^{(2)}}$ Manufacturing standard elongation \geq 14%.

3.3 American Standards

Standard		AST	M A615N	/I -16			Iss	suing Count	ry Unit	ed States of A	\merica	
		Chemic	al Com	position	n (Maxi	mum %	5)		Mechanical	Properties	(Minimum)	
Grade	С	Si	Mn	P	S	N	CEV	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%) (1)	A _{gt} (%)
Grade 40								280	420		11-12	
Grade 60								420	620		7–9	
Grade 75	_	-	15 <u></u> -	0.06	-		_	520	690	_		_
Grade 80								550	725		6–7	
Grade 100								690	790			

⁽¹⁾ Minimum elongation values depend on produced size.

Standard		AST	M A615N	Λ -18 ^{ε1}			Iss	suing Count	ry Unit	ed States of	America	
	(Chemic	al Com	position	n (Maxi	mum %)		Mechanical	Properties	(Minimum)	
Grade	С	Si	Mn	P	S	N	CEV	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%) (1)	A _{gt} (%)
Grade 40								280	420		11-12	
Grade 60				0.06				420	620		7–9	
Grade 80				0.06		_	_	550	725		6 7	
Grade 100								690	790		6–7	

⁽¹⁾ Minimum elongation values depend on produced size.

Standard		ASTI	M A706N	Л -16			Issu	ing Country United States of America				
		Chemi	cal Con	npositio	n (Max	imum 9	%)	N	/lechanical	Properties	(Minimum)	
Grade (1)	C	Si	Mn	P	S	N	CEV (2)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%) (3)	A _{gt} (%)
Grade 60	0.20	0.50	1 50	0.025	0.045		0.55	420–540	550	1 25	10–14	
Grade 80	0.30	0.50	1.50	0.035	0.045	-	0.55	550-675	690	1.25	10–12	

⁽¹⁾ For concrete reinforcement intended for applications where restrictive mechanical properties and chemical composition are required for compatibility with controlled tensile property applications or to enhance weldability.

(2) CEV = %C +
$$\frac{\%Mn}{6}$$
 + $\frac{\%Cu}{40}$ + $\frac{\%Ni}{20}$ + $\frac{\%Cr}{10}$ + $\frac{\%Mo}{50}$ + $\frac{\%V}{10}$

⁽³⁾ Minimum elongation values depend on produced size.

Standard	ASTM A510M -18		Issuing Country	United States of America	
		Che	emical Composition ((%) ⁽¹⁾	
Grade	С	Si (2)	Mn	P Max.	S Max.
AISI 1006	0.08 max.		0.25-0.45	0.040	0.050
AISI 1008	0.10 max.		0.30-0.50	0.040	0.050
AISI 1010	0.08-0.13		0.30-0.60	0.040	0.050
AISI 1012	0.10-0.15		0.30-0.60	0.040	0.050
AISI 1013	0.11-0.16		0.50-0.80	0.040	0.050
AISI 1015	0.13-0.18		0.30-0.60	0.040	0.050
AISI 1018	0.15-0.20		0.60-0.90	0.040	0.050
AISI 1022	0.18-0.23		0.70-1.00	0.040	0.050
AISI 1023	0.20-0.25		0.30-0.60	0.040	0.050
AISI 1025	0.22-0.28		0.30-0.60	0.040	0.050
AISI 1030	0.28-0.34		0.60-0.90	0.040	0.050
AISI 1037	0.32-0.38		0.70-1.00	0.040	0.050
AISI 1042	0.40-0.47		0.60-0.90	0.040	0.050
AISI 1045	0.43-0.50		0.60-0.90	0.040	0.050
AISI 1050	0.48-0.55		0.60-0.90	0.040	0.050
AISI 1055	0.50-0.60		0.60-0.90	0.040	0.050
AISI 1059	0.55-0.65		0.50-0.80	0.040	0.050
AISI 1060	0.55-0.65		0.60-0.90	0.040	0.050
AISI 1064	0.60-0.70		0.50-0.80	0.040	0.050
AISI 1065	0.60-0.70		0.60-0.90	0.040	0.050
AISI 1070	0.65-0.75		0.60-0.90	0.040	0.050

⁽¹⁾ If required, copper can be specified as 0.20% minimum.

⁽²⁾ Where silicon is required, one of the following ranges and limits are commonly specified: (max 0.10%), (0.10–0.20%), (0.15–0.35%), (0.15–0.40%), or (0.20–0.40%).

3.4 British Standard

Standard		BS: 4449/2005 + A3:2016				Iss	Issuing Country United Kingdom			(ingdom			
	Chemical Composition (Maximum %) (1)							Mechanical Properties (Minimum)					
Grade	С	Si	Mn	Р	S	N	CEV (2)	Yield Strength (MPa)	Tensil Streng (MPa	th y	Tensile to ield Ratio	EI. (%)	A _{gt} (%)
B500A											1.05(3)		2.5(4)
B500B	0.22	-	•	0.05	0.05	0.012	0.50	500-650	-		1.08	-	5.0
B500C										≥	1.15, < 1.35	-	7.5

⁽¹⁾ Maximum copper content = 0.80%.

3.5 French Standards

Standard		NF A 35-016: 1996					Iss	uing Count	ry	rance		
	(Chemio	cal Com	npositio	n (Max	imum '	m %) Mechanical Properties (Minimum)					
Grade	С	Si	Mn	P	S	N	CEV (1)	Yield Strength (MPa)	Tensil Streng (MPa	th Yield Ratio	EI. (%)	A _{gt} (%)
FeE500-2	0.22			0.050	0.050	0.012	0.50	E00		1.03	-	2.5
FeE500-3	0.22	· ·	555°	0.050	0.050	0.012	0.50	500		1.08		5.0

(1) CEV = %C +
$$\frac{\%Mn}{6}$$
 + $\frac{\%Cr + \%Mo + \%V}{5}$ + $\frac{\%Ni + \%Cu}{15}$

Standard		NF	NF A 35-080-1: 2013				Iss	uing Count	ry Fra	nce		
Chemical Composition (Maximum %) (1)						5) ⁽¹⁾	Mechanical Properties (Minimum)					
Grade	C	Si	Mn	P	S	N	CEV (2)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%)	A _{gt} (%)
B500A								500 GEO		1.05		2.5
B500B	0.22			0.050	0.050	0.012	0.50	500–650	\ 	1.08		5.0
B450B	0.22	.22 –	-	0.050	0.050	0.012	0.50	450–585	-	1.08		5.0
B450C								450-562	A <u>-1</u> 2	1.15-1.35	=	7.5

⁽¹⁾ Maximum copper content = 0.80%.

$$^{(2)}$$
 CEV = %C + $\frac{\%Mn}{6}$ + $\frac{\%Cr + \%Mo + \%V}{5}$ + $\frac{\%Ni + \%Cu}{15}$

 $^{^{(2)}}CEV = %C + \frac{\%Mn}{6} + \frac{\%Cr + \%Mo + \%V}{5} + \frac{\%Ni + \%Cu}{15}$

⁽³⁾ For sizes below 8 mm, the tensile strength to yield strength ratio is 1.02.

⁽⁴⁾ For sizes below 8 mm, A_{gt} is 1.0%.

3.6 Canadian Standard

Standard		CSA	\ G30.18	3-09 (R20)19)		Is	suing Count	ry Can	ada		
Chemical Composition (Maximum %)							%)	Mechanical Properties (Minimum)				
Grade	С	Si	Mn	Р	S	N	CEV (1)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%) (2)	A _{gt} (%)
400R				0.05				400	540	1.15	7-10	-
500R				0.05				500	675	1.15	6–9	=
400W	0.20	ο Εο	1 60	0.025	0.045		O E E	400-525	540	1.15	12-13	
500W	0.30	0.50	1.60	0.035	0.045	-	0.55	500-625	625	1.15	10-12	=

⁽¹⁾ CEV = %C + $\frac{\%Mn}{6}$ + $\frac{\%Cu}{40}$ + $\frac{\%Ni}{20}$ + $\frac{\%Cr}{10}$ - $\frac{\%Mo}{50}$ - $\frac{\%V}{10}$

3.7 Ukrainian Standard

Standard	DSTU 3760:2006						Issuir	ng Country					
		Chemi	cal Cor	npositi	on (Max	kimum	%) ⁽¹⁾) (1) Mechanical Properties (Minimum)					
Grade	С	Si	Mn	P	S	N	CEV (2)	Yield Strength (MPa)	Tensile Strength (MPa)	Tensile to Yield Ratio	EI. (%)	A _{gt} (%)	
A400S	0.25			0.045	0.050	0.012	0.25-0.52	400	500	1.05	16	5	
A500S	0.25		_	0.045	0.050	0.012	0.30-0.52	500	600	1.05	14	5	

⁽¹⁾ Maximum arsenic content = 0.08%.

(2) CEV = %C +
$$\frac{\%Mn}{6}$$
 + $\frac{\%Cr + \%Mo + \%V}{5}$ + $\frac{\%Ni + \%Cu}{15}$ or CEV = %C + $\frac{\%Mn}{6}$ + $\frac{\%Si}{10}$

⁽²⁾ Minimum elongation values depend on produced size.

4. PHYSICAL CHARACTERISTICS OF BUNDLES

4.1 Bar Weight per Unit Length

TABLE 2 - DIMENSIONS, WEIGHT PER UNIT LENGTH AND UNIT WEIGHT TOLERANCE

	NI	Manufacturing Steel Standard						
Diameter (mm) (1)	Nominal Unit Weight (kg/m) (2)	Unit Weight Tolerance (%) (3)	Number of Bars/ Bundle	Maximum Bundle Weight (kg) (4)				
10	0.617	94.5–97.5	270	1,949				
12	0.888	94.5–97.5	188	1,953				
14	1.210	95.5-98.0	138	1,964				
16	1.580	95.5–98.0	105	1,951				
18	2.000	95.5–98.0	83	1,952				
20	2.470	95.5-98.0	67	1,946				
22	2.980	95.5-98.0	56	1,963				
25	3.850	96.5–98.5	43	1,957				
28	4.840	96.5-98.5	34	1,945				
32	6.310	96.5–98.5	26	1,939				
40	9.860	96.5–98.5	17	1,981				

⁽¹⁾ Any special size from Ø 10 mm to Ø 40 mm can be produced according to customer request.

4.2 Length, Weight and Packaging

Bar lengths from 6 m up to 24 m are producible. Bundle weight varies with the bar length as shown in Table 3.

TABLE 3 - PRODUCIBLE LENGTHS, BUNDLE WEIGHT AND PACKAGING

Ser.	Bundle Length (m) (1)	Maximum Bundle Weight (kg)	No. of Double Ties
1	6	991	4
2	10	1,651	5
3	12 ⁽²⁾	1,981	6
4	14	2,311	6
5	16	2,641	7
6	18	2,972	8
7	24	3,962	9

⁽¹⁾ Any special lengths from 6 up to 24 meter can be produced upon request.

⁽²⁾ Unit weights are according to Egyptian and international standards.

⁽³⁾ For more customer satisfaction; the typical unit weight for the local market is on the negative side of the Egyptian standard acceptable limits.

⁽⁴⁾ Maximum Bundle Weight in case of standard bar length of 12 m.

⁽²⁾ Standard length in the local Egyptian market.

SECTION 2: WIRE ROD

1. PRODUCED SIZES

The Factory produces wire rod from size Ø 5.5 mm to size Ø 16 mm as follows:

	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
Diameter (mm)	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0
			14.5	15.0	15.5	16.0		

2. COIL WEIGHT

About 2.0 tons.

3. COIL DIMENSIONS

Inner diameter: 800-850 mm.
Outer diameter: 1,200-1,250 mm.

Coil height: 2,000 mm maximum (varies with produced size).

4. COIL PACKAGING

Compact packaging with 4 ties of 7 mm wire. Ties are single or double according to size, destination, and customer request. Bellyband is applied for export shipments.

5. APPLICATIONS

The Factory produces a range of low, medium and high carbon steel wire rod for industrial applications according to international standards.

5.1 Wire Rod for Welded Steel Fabric

Wire rod to be used for making cold-drawn concrete reinforcement bars and welded steel fabric.

5.2 Wire Rod for Welding Electrodes

Wire rod for producing welding electrodes according to DIN 8557 S2 or AISI 1008 with special silicon and manganese levels.

5.3 Wire Rod for Cable Armouring

Wire rod for cable armouring which is used in underground projects in order to protect the electric cables from mechanical damage.

5.4 Drawing-Grade Wire Rod

Wire rod to be used for drawing wires for various applications. Typical exemplary applications are listed in Table 1.

TABLE 1 - TYPICAL EXEMPLARY APPLICATIONS OF PRODUCED DRAWING-GRADE WIRE ROD

Grades	Representative Grades	Application					
Low carbon	AISI (1006, 1008, 1010, 1012, 1013, 1015, 1018, 1020, 1022)	Barbed wire, nails, refrigerator condenser, refrigerator shelves, coated wires for fences, steel wool, galvanized drawn wire, cooker's pots holders.					
Medium carbon	AISI (1025, 1030, 1037,1038, 1042, 1045)	Nails, bolts, galvanized drawn wire, spring fastening (mattress component).					
High carbon	AISI (1050, 1055, 1059, 1060, 1064, 1065, 1070)	Mattress spring (upholstery), sling wire rope, galvanized drawn wire, electric cables reinforcing.					

6. PRODUCIBLE STANDARDS

The Factory produces steel wire rod according to the international standards:

6.1 American Standard

ASTM A510M - 18

6.2 International/European Standard

EN ISO 16120-2:2017

6.3 Japanese Standard

JIS G 3507-1:2010

Other standards can be produced upon customer request. Please contact sales team for details.

6.1 American Standard

Standard	ASTM A510M -18		Issuing Country	United States of Amer	ica
(2.2)		Che	mical Composition (9	%) ^(3,4)	
Grade (1, 2)	С	Si (5)	Mn	P Max.	S Max.
AISI 1006	0.08 max.		0.25-0.45	0.040	0.050
AISI 1008	0.10 max.		0.30-0.50	0.040	0.050
AISI 1010	0.08-0.13		0.30-0.60	0.040	0.050
AISI 1012	0.10-0.15		0.30-0.60	0.040	0.050
AISI 1013	0.11-0.16		0.50-0.80	0.040	0.050
AISI 1015	0.13-0.18		0.30-0.60	0.040	0.050
AISI 1018	0.15-0.20		0.60-0.90	0.040	0.050
AISI 1022	0.18-0.23		0.70-1.00	0.040	0.050
AISI 1023	0.20-0.25		0.30-0.60	0.040	0.050
AISI 1025	0.22-0.28		0.30-0.60	0.040	0.050
AISI 1030	0.28-0.34		0.60-0.90	0.040	0.050
AISI 1037	0.32-0.38		0.70-1.00	0.040	0.050
AISI 1042	0.40-0.47		0.60-0.90	0.040	0.050
AISI 1045	0.43-0.50		0.60-0.90	0.040	0.050
AISI 1050	0.48-0.55		0.60-0.90	0.040	0.050
AISI 1055	0.50-0.60		0.60-0.90	0.040	0.050
AISI 1059	0.55-0.65		0.50-0.80	0.040	0.050
AISI 1060	0.55-0.65		0.60-0.90	0.040	0.050
AISI 1064	0.60-0.70		0.50-0.80	0.040	0.050
AISI 1065	0.60-0.70		0.60-0.90	0.040	0.050
AISI 1070	0.65-0.75		0.60-0.90	0.040	0.050

⁽¹⁾ AISI steel grades are used for industrial applications. Mechanical properties are to be agreed upon with the customer.

⁽²⁾ Wire rod for producing welding electrodes can be produced according to DIN 8557 S2 or AISI 1008 with special silicon and manganese levels.

⁽³⁾ If required, copper can be specified as 0.20% minimum.

⁽⁴⁾ The chemical composition can be modified according to customers' needs and Factory Steel capabilities.

⁽⁵⁾ Where silicon is required, one of the following ranges and limits are commonly specified: (max 0.10%), (0.10–0.20%), (0.15–0.35%), (0.15–0.40%) or (0.20–0.40%).

6.2 International/European Standard

Standard	E	N ISO 16120-2:2	017	Issuing Coun	try Inte	rnational/Eur	opean	IŞO	* * * *
	Europea	n		Chemic	cal Compo	sition (%) ^{(1,}	2, 3)		
Grade	Materia No.	C	Si ⁽⁴⁾	Mn	P max.	S max.	Cr max.	Ni max.	Cu (5) max.
C4D	1.0300	≤0.06	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C7D	1.0313	0.05-0.09	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C9D	1.0304	≤0.10	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C10D	1.0310	0.08-0.13	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C12D	1.0311	0.10-0.15	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C15D	1.0413	0.12-0.17	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C18D	1.0416	0.15-0.20	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C20D	1.0414	0.18-0.23	≤0.30	0.30-0.60	0.035	0.035	0.20	0.25	0.30
C26D	1.0415	0.24-0.29	0.10-0.30	0.50-0.80	0.030	0.030	0.20	0.25	0.30
C32D	1.0530	0.30-0.35	0.10-0.30	0.50-0.80	0.030	0.030	0.20	0.25	0.30
C38D	1.0516	0.35-0.40	0.10-0.30	0.50-0.80	0.030	0.030	0.20	0.25	0.30
C42D	1.0541	0.40-0.45	0.10-0.30	0.50-0.80	0.030	0.030	0.20	0.25	0.30
C48D	1.0517	0.45-0.50	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C50D	1.0586	0.48-0.53	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C52D	1.0588	0.50-0.55	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C56D	1.0518	0.53-0.58	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C58D	1.0609	0.55-0.60	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C60D	1.0610	0.58-0.63	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C62D	1.0611	0.60-0.65	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C66D	1.0612	0.63-0.68	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C68D	1.0613	0.65-0.70	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C70D	1.0615	0.68-0.73	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25
C72D	1.0617	0.70-0.75	0.10-0.30	0.50-0.80	0.030	0.030	0.15	0.20	0.25

⁽¹⁾ Elements not included in this table may not be added intentionally to the steel without the agreement of the purchaser, except those intended for finishing the heat. By agreement at the time of ordering, the grades can contain additions (commonly termed micro-alloying additions) of Cr and V. The content of Cr is up to 0.30% and the content of V is 0.05% to 0.10%.

^{(2) %}Mo (max.) = 0.05

^{(3) %}AI (max.) = 0.01. By agreement at the time of ordering, the value for aluminium can be fixed at 0.01% to 0.06%. In such cases, the value of silicon can be fixed at ≤0.10% on request.

⁽⁴⁾ For wire rod intended for galvanization, the required lower limit of silicon content should be specified at the time of ordering. By agreement at the time of ordering, the maximum silicon level for grades C4D to C20D may be further restricted.

 $^{^{(5)}}$ A maximum copper content of 0.20% may be agreed at the time of ordering. For steel grades C48D to C92D, Cu + Sn shall be \leq 0.25%.

6.3 Japanese Standard

Standard	JIS G 350	7-1:2010	Issu	ing Country	Japan			
Grade	Chemical Composition (%)							
	С	Si	Mn	P max.	S max.	Cr max.	Ni max.	Cu max.
SWRCH6R	≤0.08		≤0.6	0.040	0.040	0.20	0.20	0.30
SWRCH8R	≤0.10		≤0.6	0.040	0.040	0.20	0.20	0.30
SWRCH12R	0.10-0.15		0.30-0.60	0.040	0.040	0.20	0.20	0.30

